Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This review highlights recent advances in the use of nutshell-derived materials, including peanut, walnut, and other lignocellulosic shell wastes, as reinforcers in polymer composites. The focus is placed on evaluating how the incorporation of nutshell fillers influences the mechanical and thermal properties of various polymer matrices. Key findings across multiple studies show that nutshell reinforcement can significantly enhance tensile strength, modulus, thermal stability, and biodegradability, depending on filler concentration, particle size, and surface treatment. The review also discusses the sustainability and economic benefits of using agricultural waste as a functional additive, offering insights into the design of low-cost, eco-friendly polymer composites for packaging, construction, and environmental applications.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Lignin, an abundant and renewable biopolymer, has gained significant attention as a sustainable modifier and building block in polymeric materials. Recent advancements highlight its potential to tailor mechanical, thermal, and barrier properties of polymers while offering a greener alternative to petroleum-based additives. This review provides an updated perspective on the incorporation of lignin into various polymer matrices, focusing on lignin modification techniques, structure–property relationships, and emerging applications. Special emphasis is given to recent innovations in lignin functionalization and its role in developing high-performance, biodegradable, and recyclable materials such as polyurethanes, epoxy resins, phenol-formaldehyde resins, lignin-modified composites, and lignin-based films, coatings, elastomers, and adhesives. These lignin-based materials are gaining attention for potential applications in construction, automated industries, packaging, textiles, wastewater treatment, footwear, supporting goods, automobiles, printing rollers, sealants, and binders.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Herein, a method to upcycle polyacrylonitrile (PAN) into high-sulfur-content materials (HSMs) by reacting 10 wt. % PAN with 90 wt. % elemental sulfur at 220 °C is reported. The resulting composites (PANS90) form glassy solids that display compressive, flexural, and tensile strengths comparable to or exceeding some common construction materials, including C62 brick. Comparison to other plastic-derived HSMs indicates that PANS90 exhibits mechanical properties including compressional strength (11.4 MPa), flexural strength (3.6 MPa) and tensile strength (2.5 MPa) within a similar or slightly improved range. Mechanistic investigations using small-molecule analogs (e.g., adiponitrile) suggest that thiophene ring formation and radical-driven sulfur–carbon bond formation are key reaction pathways, contributing to the composite’s crosslinked microstructure. Preliminary life cycle assessments estimate a global warming potential for PANS90 (0.33 kg CO2e/kg) that is about three times lower than that of Ordinary Portland Cement, underscoring its reduced environmental footprint. Overall, this sulfur-based upcycling strategy addresses two pressing waste-management concerns—surplus sulfur from petroleum refining and unrecycled PAN—while furnishing robust composites suitable for applications ranging from lightweight construction materials to specialty polymer systems.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Abstract Herein high-strength composites are prepared from elemental sulfur, sunflower oil, and wastewater sludge. Fats extracted from dissolved air flotation (DAF) solids were reacted with elemental sulfur to yield compositeDAFS(10 wt% DAF fats and 90 wt% sulfur). Additional composites were prepared from DAF fat, sunflower oil and sulfur to giveSunDAFx(x = wt% sulfur, varied from 85–90%). The composites were characterized by spectroscopic, thermal, and mechanical methods. FT-IR spectra revealed a notable peak at 798 cm–1indicating a C–S stretch inDAFS,SunDAF90, andSunDAF85indicating successful crosslinking of polymeric sulfur with olefin units. SEM/EDX analysis revealed homogenous distribution of carbon, oxygen, and sulfur inSunDAF90andSunDAF85. The percent crystallinity exhibited byDAFS(37%),SunDAF90(39%), andSunDAF85(45%) was observed to be slightly lower than that of previous composites prepared from elemental sulfur and fats and oils.DAFSandSunDAFxdisplayed compressive strengths (26.4–38.7 MPa) of up to 227% above that required (17 MPa) of ordinary Portland cement for residential building foundations. The composite decomposition temperatures ranged from 211 to 219 °C, with glass transition temperatures of − 37 °C to − 39 °C. These composites thus provide a potential route to reclaim wastewater organics for use in value-added structural materials having mechanical properties competitive with those of commercial products.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Over 80 MT of elemental sulfur, a byproduct of fossil fuel desulfurization, are generated annually. This has spurred the development of high sulfur content materials (HSMs) via inverse vulcanization as a productive pathway towards sulfur utilization. In this study, we evaluate the antimicrobial performance of SunBG90, an HSM made from brown grease and sulfur, as tiles or infused into fabric squares. The static antimicrobial activity of SunBG90 tiles was assessed, revealing excellent efficacy against Gram-positive bacteria, with reductions of 96.84% for Staphylococcus aureus and 91.52% for Listeria monocytogenes. The tiles also exhibited strong antifungal activity, reducing Candida auris by 96.20% and mold (fumigatus) by 83.77%. In contrast, efficacy against Gram-negative bacteria was more variable, with moderate reductions for Escherichia coli (61.10%) and Salmonella enteritidis (62.15%), lower activity against Campylobacter jejuni and Salmonella typhi, and no effect on Clostridium perfringens. Under dynamic conditions, SunBG90-infused fabrics achieved a near-complete inhibition of L. monocytogenes (99.91%) and high reduction of E. coli (98.49%), along with a 96.24% inhibition of Candida auris. These results highlight the potential and limitations of SunBG90 for antimicrobial applications, emphasizing the need for further optimization to achieve consistent broad-spectrum activity.more » « lessFree, publicly-accessible full text available April 1, 2026
-
A significant waste material threatening sustainability efforts are post-consumer food packaging goods. These ubiquitous multi-materials comprise chemically disparate components and are thus challenging targets for recycling. Herein, we undertake a proof-of-principle study in which we use a single-stage method to convert post-consumer multi-material food packaging (post-consumer peanut butter jars) to a high compressive strength composite (PBJS90). This is accomplished by thiocracking the ground jar pulp (10 wt. %) with elemental sulfur (90 wt. %) at 320 °C for 2 h. This is the first application of thiocracking to such mixed-material post-consumer goods. Composite synthesis proceeded with 100% atom economy, a low E factor of 0.02, and negative global warming potential of −0.099 kg CO2e/kg. Furthermore, the compressive strength of PBJS90 (37.7 MPa) is over twice that required for Portland cement building foundations. The simplicity of composite synthesis using a lower temperature/shorter heating time than needed for mineral cements, and exclusive use of waste materials as precursors are ecologically beneficial and represent an important proof-of-principle approach to using thiocracking as a strategy for upcycling multi-materials to useful composites.more » « less
-
ABSTRACT Lignin, comprising 20%–35% of lignocellulosic biomass, is the second most abundant biopolymer after cellulose. As the bioethanol industry expands, the accumulation of lignin by‐products necessitates innovative valorization strategies. This study explores the synthesis and characterization of lignin‐derived composites. Specifically, the reaction of 20 wt. % lignin‐derived guaiacol or syringol with 80 wt. % elemental sulfur gives composites GS80and SS80, respectively. The chemical structures of composites were elucidated using GC–MS,1H NMR, and UV–Vis spectroscopy, revealing the formation of both SCaryland SCalkylbonds. Thermal and morphological analysis (via TGA, DSC, PXRD, and SEM‐EDS) indicated SS80has higher crystallinity and thermal stability than GS80, attributed to a higher degree of crosslinking and a greater content of dark sulfur. Mechanical testing showed SS80exhibits superior compressional and flexural strengths, and enhanced Young's modulus and Shore hardness, compared to GS80. Notably, the mechanical strength parameters for SS80are comparable to those of C62 class bricks used in construction applications. These findings suggest that lignin‐derived composites, particularly those incorporating syringol, can provide viable alternatives to traditional materials in various applications, contributing to both waste valorization and sustainable materials science.more » « lessFree, publicly-accessible full text available February 15, 2026
-
Plastics and composites for consumer goods often require flame retardants (FRs) to mitigate flammability risks. Finding FRs that are effective in new sustainable materials is important for bringing them to the market. This study evaluated various FRs in SunBG90 (a composite made from triglycerides and sulfur)—a high sulfur-content material (HSM) promising for use in Li–S batteries, where flame resistance is critical. SunBG90 was blended with FRs from several classes (inorganic, phosphorus-based, brominated, and nitrogen-containing) to assess compliance with UL94 Burning Test standards. Inorganic FRs showed poor flame retardancy and lower mechanical strength, while organic additives significantly improved fire resistance. The addition of 20 wt. % tetrabromobisphenol A enabled SunBG90 to achieve the highest flame retardancy rating (94V-0), while also enhancing wear resistance (52 IW, ASTM C1353) and bonding strength (26 psi, ASTM C482). Selected organic FRs also enhance compressive strength compared to the FR-free SunBG90. This research highlights the potential of HSMs with traditional FRs to meet stringent fire safety standards while preserving or enhancing the mechanical integrity of HSM composites.more » « less
An official website of the United States government
